Received: April 28, 1989; accepted: June 28, 1989

REACTION OF THE FLUORIDE ANION WITH ACETONITRILE, CHLOROFORM AND METHYLENE CHLORIDE

KARL O. CHRISTE* AND WILLIAM W. WILSON

Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California 91303 (USA)

SUMMARY

¹⁹F and ¹H NMR spectra of the F⁻ anion in CH₃CN and CD₃CN solutions show that the F⁻ anion can abstract a proton from CH₃CN resulting in the slow formation of the bifluoride and acetonitrile anions. With chloroform or methylene chloride the F⁻ anion undergoes halogen exchange reactions at room temperature. These reactions demonstrate the exceptional reactivity of the free fluoride anion when present as a highly soluble salt.

INTRODUCTION

During recent work in our laboratory on the synthesis and characterization of anhydrous, HF_2^- free tetramethylammonium fluoride, we have used a combination of Karl Fischer titration and infrared and NMR spectroscopy to check for water and HF_2^- impurities. It was found that samples of $[N(CH_3)_4]F$, which based on their infrared spectra were free of H_2O and HF_2^- , showed significant amounts of HF_2^- in the NMR spectra of their CH_3CN solutions. The fact that the concentration of HF_2^- increased with increasing time, suggested that the HF_2^- might be generated by attack on the solvent by F^- . Since CH_3CN is frequently used as a solvent in fluorine chemistry, it is important to know whether CH_3CN undergoes a reaction with the F^- anion. Furthermore, it was interesting to examine whether polar, chlorinated hydrocarbons such as $CHCl_3$ or CH_2Cl_2 could be used as inert solvents for $[N(CH_3)_4]F$.

EXPERIMENTAL

The synthesis of anhydrous, HF_2^- free [N(CH₃)₄]F will be described elsewhere [1]. The CH₃CN (Baker, Bio-analyzed, having an H₂O content of 40 ppm) was treated with P₂O₅

0022-1139/90/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

and freshly distilled in a flamed out Pyrex vacuum system prior to use, thereby reducing its water content to ≤ 4 ppm. The CD₃CN (99.96%D, Stohler) was used as received and showed only a trace of CHD₂CN as the only impurity detectable by NMR spectroscopy. The CH₂Cl₂ and the CHCl₃ (J.T. Baker, Analyzed) were dried by storage over Linde 4A molecular sieves. The CHCl₃ contained 1% of CH₃CH₂OH as a stabilizer and had a water content of 0.006% before treatment with the molecular sieves. The NMR spectra were recorded on a Varian EM 390 spectrometer operating at 90 MHz for ¹H and 84.6 MHz for ¹⁹F. Tetramethylsilane or CFCl₃ was used as an external standard with negative shifts being upfield from the standard. Teflon-FEP sample tubes (Wilmad Glass Co.) were used for the CH₃CN reactions and glass tubes for the experiments involving CHCl₃ or CH₂Cl₂.

RESULTS AND DISCUSSION

Samples of $[N(CH_3)_4]F$, which based on their infrared spectra and Karl Fischer titrations were HF_2^- free and had less than 0.06 weight percent water, were dissolved in either CH_3CN or CD_3CN . Their saturated solutions in Teflon-FEP tubes were periodically monitored by ¹⁹F and ¹H NMR spectroscopy for their HF_2^- content.

The ¹⁹F NMR spectra of $[N(CH_3)_4]F$ in CH₃CN showed two signals: one intense singlet at \emptyset -74 to -79 for F⁻ [2], and a doublet at \emptyset -145 to -148 with J1_H19_F = 121 Hz for HF₂⁻ [2, 3]. In fresh solutions, the HF₂⁻ concentrations were very low but increased in the course of several hours to the 5 to 10 mol% range and after standing at room temperature for several days reached a level of 30 mol%. In addition to an increase in the intensity of the HF₂⁻ signal, the originally colorless CH₃CN solutions also developed a yellow color on standing.

The ¹H NMR spectra of the CH₃CN solutions of $[N(CH_3)_4]F$ showed, besides the CH₃CN ($\delta = 1.96$) and $[N(CH_3)_4]^+(\delta = 3.1, J_{1_H}_{1_H} = 0.6 \text{ Hz} [4])$ signals, a triplet at $\delta = 16.3$ with $J_{1_H}_{1_H}_{1_F} = 121$ Hz characteristic for HF₂⁻ [3] and a broad singlet at $\delta = 9.1$ characteristic for the CH₂CN⁻ anion [5]. The relative intensities of the HF₂⁻ and CH₂CN⁻ signals increased together with increasing time.

Based on the above evidence, it must be concluded that at room temperature the F^- anion was slowly reacting with CH₃CN according to:

 $2F^- + CH_3CN \rightarrow HF_2^- + CH_2CN^-$

Although the NMR spectra showed no evidence for the presence of free HF, the above reaction almost certainly involves at least two steps. The first one is the slow abstraction of a proton from CH_3CN by the strong base F^-

$$F^- + CH_3CN \rightarrow HF + CH_2CN^-$$

followed by the rapid reaction of HF with the large excess of F⁻ present.

$$HF + F^- \rightarrow HF_2^-$$

Conclusive proof for the generation of the HF_2^- anion from the acetonitrile solvent was obtained by substitution of the CH_3CN by CD_3CN . If the bifluoride anion is, indeed, generated from the reaction of F^- with CH_3CN , replacement of CH_3CN by CD_3CN in the reaction

 $2F^- + CD_3CN \rightarrow DF_2^- + CD_2CN^-$

should result in the following spectroscopic changes: the ¹⁹F NMR spectrum should show a triplet at \emptyset -147 with $J_{2_D}_{1_{P_F}} = 18$ Hz for DF_2^- [6] instead of the HF_2^- doublet , and the ¹H spectrum should show no new resonances since only deuterated species are being formed. These predictions were experimentally confirmed (the only new signal was a triplet at \emptyset -147 with a coupling constant of 17.6 Hz), and no evidence for the formation of either HF_2^- or CH_2CN^- was detected in the CD_3CN experiment. If some bifluoride had been present in the $[N(CH_3)_4]F$ starting material, it could have only been in the form of HF_2^- and, therefore, both an HF_2^- and aDF_2^- signal should have been observed since HF_2^- and DF_2^- do not undergo a fast exchange in CH_3CN [6].

The possibility of using either methylene chloride or chloroform as a solvent for $[N(CH_3)_4]F$ was also examined. It was found that at room temperature both solvents undergo a halogen exchange reaction with $[N(CH_3)_4]F$. Whereas the reaction with CH_2Cl_2 is relatively slow and CH_2ClF is the main reaction product, the reaction with $CHCl_3$ is quite fast and all three possible exchange products, $CHCl_2F$, $CHClF_2$, and CHF_3 in a mol ratio of about 2:3:1 were observed by NMR spectroscopy. Thus, the ¹⁹F and ¹H NMR spectra of a saturated CH_2Cl_2 solution containing some undissolved $[N(CH_3)_4]F$ exhibited, in addition to intense signals due to the free fluoride anion (singlet at \emptyset -97.0 with a line width of 3 Hz) and the $[N(CH_3)_4]^+$ cation (singlet at δ 3.44), a triplet at \emptyset -169.4 and a doublet at δ 5.93 with $J_{HF} =$. 49 Hz which are characteristic for CH_2ClF [7]. For a saturated $CHCl_3$ solution containing some undissolved $[N(CH_3)_4]F$, the F⁻ anion signal at \emptyset -120.3 was weak and disappeared quickly giving rise to doublets at \emptyset -78.3 with $J_{HF} = 79.1$ Hz, \emptyset -80.8 with $J_{HF} = 54.3$ Hz, and \emptyset -84.3 with $J_{HF} = 75.0$ Hz, which are characteristic for CH_2F_3 [8], $CHCl_2F$ [9, 10], and $CHClF_2$, respectively. Although halogen exchange reactions involving chlorinated

hydrocarbons and ionic fluorides are well known [11, 12], the mild conditions under which the above described reactions proceed are surprising.

CONCLUSION

Although CH₃CN is an excellent solvent for $[N(CH_3)_4]F$, it is not chemically inert. The strongly basic F⁻ anion can abstract a proton from CH₃CN with the formation of the HF₂⁻ and CH₂CN⁻ anions. Similarly, CHCl₃ and CH₂Cl₂ readily react with $[N(CH_3)_4]F$ at room temperature undergoing halogen exchange reactions thus demonstrating the high reactivity of the free fluoride anion.

ACKNOWLEDGMENT

The authors are grateful to the Office of Naval Research and the Army Research Office for financial support and to Dr. C. J. Schack and Mr. R. D. Wilson for their help.

REFERENCES

- 1 W. W. Wilson and K. O. Christe, to be published.
- 2 K. O. Christe and W. W. Wilson, J. Fluorine Chem., <u>46</u> (1990) 339.
- 3 J. S. Martin and F. Y. Fujiwara, Can. J. Chem., <u>49</u> (1971) 3071.
- 4 D. J. Brauer, H. Buerger, M. Grunwald, G. Pawelke, and J. Wilke, Z. Anorg. Allg. Chem., <u>537</u> (1986) 63.
- 5 C. Krueger, J. Organometall. Chem., <u>9</u> (1967) 125; I. N. Juchnovski and I. G. Binev, ibid. <u>99</u> (1975) 1.
- 6 F. Y. Fujiwara and J. S. Martin, J. Am. Chem. Soc., <u>96</u> (1974) 7625.
- 7 P. Resnick, private communication.
- 8 R. H. Cox and S. L. Smith, J. Magn. Res., <u>1</u> (1969) 432.
- 9 G. V. D. Tiers, J. Am. Chem. Soc., <u>84</u> (1962) 3972.
- 10 J. W. Emsley, L. Phillips, and V. Wray, 'Fluorine Coupling Constants,' Pergamon, Oxford, 1977.
- 11 W. A. Sheppard and C. M. Sharts, 'Organic Fluorine Chemistry,' W. A. Benjamin, New York, 1969.
- 12 M. Hudlicky, 'Chemistry of Organic Fluorine Compounds,' Wiley, New York, 1976.